226 ELECTROMAGNETIC WAVES [CHAP. 14

Integration of this equation throughout an arbitrary volume v gives

2 2
foEzdv=—j(§%+;a; d -§(Exu) ds

where the last term has been converted to an integral over the surface of v by use of the divergence
theorem.

The integral on the left has the units of watts and is the usual ohmic term representing energy
dissipated per unit time in heat. This dissipated energy has its source in the integrals on the
right. Because €E?/2 and uH?/2 are the densities of energy stored in the electric and magnetic
fields, respectively, the volume integral (including the minus sign) gives the decrease in this stored
energy. Consequently, the surface integral (including the minus sign) must be the rate of energy
entering the volume from outside. A change of sign then produces the instantaneous rate of energy
leaving the volume:

P(t)=£(ExH)-sS=£9-dS

where P=EXH is the Poynting vector, the instantaneous rate of energy flow per unit area at a
point.

In the cross product that defines the Poynting vector, the fields are supposed to be in real form.
If, instead, E and H are expressed in complex form and have the common time-dependence &/,
then the time-average of @ is given by

Poue = 1 Re (E X H¥)

where H* is the complex conjugate of H. This follows the complex power of circuit analysis, S=
IVI*, of which the power is the real part, P=4Re VI*.

For plane waves, the direction of energy flow is the direction of propagation. Thus the
Poynting vector offers a useful, coordinate-free way of specifying the direction of propagation, or of
determining the directions of the fields if the direction of propagation is known. This can be
particularly valuable where incident, transmitted, and reflected waves are being examined.

Solved Problems

14.1. A traveling wave is described by y =10sin(8z —wt). Sketch the wave at t=0 and
at t=t,, when it has advanced /8, if the velocity is 3% 10°m/s and the angular
frequency  =10°rad/s. Repeat for @ =2x10°rad/s and the same ¢, .

The wave advances A in one period, 7 =2n/w. Hence

(=l
'"8 4o
=(3x10*) ——=236m

4( lO’)

The wave isshownat t=0 and ¢=1¢ inFig. l4—9(a). At twice the frequency, the wavelength A is
one-half, and the phase shift constant f is twice, the former value. See Fig. 14-9(b). At 1, the wave
has also advanced 236 m, but this distance is now 1/4.
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Fig. 149
14.2. In free space, E(z,t)=10"sin (wt— fz)a, (V/m). Obtain H(z, 1).
Examination of the phase, wf — Bz, shows that the direction of propagation is +z. Since EXH
must also be in the +2z direction, H must have the direction —a,. Consequently,
E

- ;’. =1,=1202Q or H, =

- %;—tsin (ot — Bz) (A/m)

10°
120x

and H(z, t)=— sin (wt — Bz)a, (A/m)

14.3. For the wave of Problem 14.2 determine the propagation constant y, given that the frequency
is f=95.5MHz.
In general, y = Vjou(o + jwe). In free space, o0=0, so that

. . 27(95.5x 10°) _
Y=1wV#o€o=l(—c' =J—(Tog)=l(?—0)m '

Note that this result shows that the attenuation factor is a=0 and the phase-shift constant
is B=20rad/m.

14.4. Examine the field
ol E(z, t) = 10sin (wt + fz)a, + 10 cos (wt + Bz)a,
.% inthe z=0 plane, for wt=0, n/4, n/2, 3x/4 and .

The computations are presented in Table 14-1.

Table 14-1
ot |E =10sinwt | E,=coswt E=E.a +Ea
0 0 10 10a,
10

x| 10 10 to(%1%)
R V2 V2
n

0 10 0 10a,
w| 10 -10 to(2%)
4 V2 V2 V2

n 0 -10 10(—a,)




